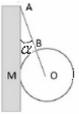
Série d'exercices : équilibre d'un corps sous l'action de trois forces (tronc commun)

1er exercice:

Une sphère (S) homogène, de masse m=1,4kg de rayon r=10cm et de centre O, est attachée en A à un mur parfaitement lisse, par l'intermédiaire d'un fil fixé en un point B de sa surface. La sphère repose en M contre le mur.

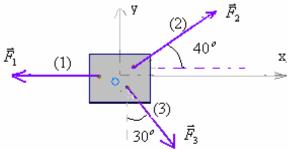


- 1) Quelle sont les forces qui s'exercent sur la sphère?
- 2) a)Quelles relations existent entre ces forces à l'équilibre? b)Représentez ces forces sur la figure.
- 3) Sachant que le fil AB a une longueur AB=20cm.
- 3-1- Calculer la valeur de l'angle α .
- 3-2- a) En utilisant la méthode graphique calculer l'intensité de la tension \vec{T} du fil et celle de la réaction \vec{R} du mur b) Même question en utilisant la méthode analytique.

On donne g=10N/kg

2^{er} exercice

Le corps S est en équilibre sous l'action de trois forces \vec{F}_1 , \vec{F}_2 et \vec{F}_3 Exercées par les fils (1), (2) et (3). (voir schéma).



Le poids du corps S est négligeable devant les intensités des trois forces. On considère le repère (O,x,y) d'origine O confondu avec le centre de gravité du corps S.

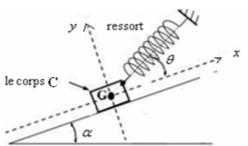
Sachant que l'intensité de la force $ar{F}_2$ est $F_2=4N$.

- 1) Donner les conditions S d'équilibre du corps S.
- 2) Déterminer en utilisant la méthode analytique l'intensité de la force \vec{F}_3 (par projection sur l'axe oy).
- 3) Déterminer en utilisant la méthode analytique l'intensité de la force \bar{F}_1 (par projection sur l'axe ox).

3^{ème} exercice:

Un corps solide C de masse m=200g est maintenu en équilibre sur un plan incliné d'un angle $\alpha=30^\circ$ par rapport à l'horizontal par l'intermédiaire d'un ressort de constante de raideur K=40N.m⁻¹.

Lors que l'équilibre est établi le ressort est allongé et son axe fait un angle $\theta = 20^{\circ}$ avec la ligne de plus grande pente du plan incliné.



Sachant que le contact se fait sans frottement et l'intensité de pesanteur g = 10N/kg:

- 1) Faites le bilan des forces qui s'exercent sur le corps C à l'équilibre et représentez ces forces sur la figure précédente.
- 2) 2-1- En utilisant la méthode analytique , déterminer l'expression de l'allongement $\Delta \ell$ du ressort à l'équilibre en fonction de g, θ et , K α . puis calculer la valeur de l'allongement $\Delta \ell$. (utiliser la projection sur l'axe ox) 2-2- En déduire la tension du ressort .
- 3) Déterminer l'intensité de la réaction R du plan incliné sur le corps C.

exercice :

Soit un corps S, de masse m inconnue, maintenu en équilibre sur un plan incliné sans frottement par un ressort. Le plan incliné fait un angle $\alpha = 20^{\circ}$ avec l'horizontal et la raideur du ressort $k = 15 \text{ N.m}^{-1}$.

- Faire le bilan des forces qui s'exercent sur le corps S.
- représentez ces forces.
- Calculer l'intensité de la force exercée par le ressort sur le corps S (tension de ressort T) sachant que son allongement est : $\Delta \ell = 5cm$
- En utilisant la méthode analytique (projections vectorielles) :
 - a) Déterminer la valeur de la masse m du corps S.
- b) Déterminer l'intensité de la réaction du plan incliné sur le corps S.

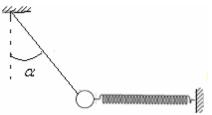
On donne : g=10N/kg

exercice:

Un disque homogène métallique très mince, de masse m=300g est accroché à un fil et à un ressort selon la figure ci-contre.

Lorsque l'équilibre est établit on constate que le dispositif est dans un plan vertical. Le ressort exerce une

force d'intensité F=4N sur le disque.

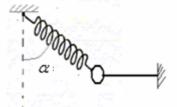


- Faire le bilan des forces qui s'exercent sur le disque.
- Donnez la condition d'équilibre du disque.
- 3) Déterminer l'intensité de la force exercée par le fil sur le disque et la valeur de l'angle |lpha| .
 - 3-1-par construction géométrique.
 - 3-2- par la méthode analytique.

On donne : g=10N/kg

On considère un solide S de masse m=200g, accroché à un ressort et à un fil comme l'indique la figure.

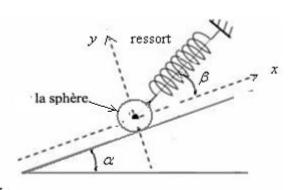
Lorsque l'équilibre est établit, le ressort fait un angle $\alpha = 30^{\circ}$ par rapport à la verticale et le fil est horizontal. La constante de raideur est K=40 N/m et g= 10N/m.



- Représenter les forces qui s'exercent sur le solide S.
- Choisir un système d'axe orthonormés convenable et représenter le sur la figure.
- Donner la condition d'équilibre du solide S.
- Trouver les composantes de chacune des forces qui s'exercent sue S dans le système d'axe choisi.
- Calculer la tension du ressort .
- Déduire l'allongement Δℓ du ressort à l'équilibre.

Une sphère homogène de masse m=1,7kg repose sans frottement sur un plan lisse incliné d'un angle $\alpha = 40^{\circ}$ avec l'horizontale. La sphère est maintenue sur le plan incliné par l'intermédiaire d'un ressort faisant un angle β avec la ligne de plus grande pente du plan.

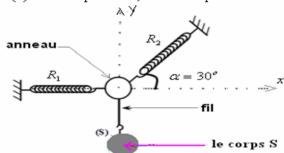
- 1/ Faire le bilan des forces qui s'exercent sur la sphère.
- 2/ Donner l'expression de la force T exercée par le ressort sur la sphère en fonction de l'angleβ,, m, α et g.
- 3/ Calculer T pour $\beta=0^{\circ}$; $\beta=25^{\circ}$ et $\beta=45^{\circ}$.
- 4/ En déduire pour chaque cas l'allongement de ce ressort de raideur k=60N/m. On donne g=10N/kg



8^{ème} exercice :

On donne g=9.8N/kg

Le système représenté dans la figure (1) est en équilibre, il est composé d'un corps (S) homogène de masse m=600g



Le corps S est suspendu à un fil et lié à un anneau de masse négligeable.

L'anneau est maintenu en état d'équilibre par un fil et deux ressorts:

- -Le ressort R_1 exerce sur le corps S une force horizontale \vec{F}_1 .
- -Le ressort R_2 exerce sur le corps S une force horizontale \vec{F}_2 faisant un angle $\alpha = 30^{\circ}$ avec l'horizontale.

(le fil est inextensible et exerce sur le corps S une force \vec{T}).

On donne g=10N/kg

Etude de l'équilibre du corps (S):

- 1) Faites le bilan des forces qui s'exercent sur le corps S.
- Représentez les forces qui s'exercent sur le corps (S).
- 3) 3-1-Calculer l'intensité du poids du corps (S).
- 3-2) En appliquant la condition d'équilibre du corps S déterminer l'intensité de la tension du fil \vec{T} .

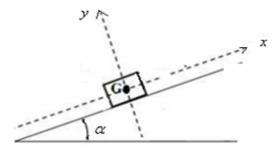
Etude de l'équilibre de l'anneau:

- 1) Faites le bilan des forces qui s'exercent sur l'anneau.
- 2) Représentez les forces qui s'exercent sur l'anneau.
- 3) Montrer en utilisant la méthode analytique que l'intensité de la force \vec{F}_2 est $F_2 = 8N$.

puis déterminer la valeur de l'intensité de la force \vec{F}_1 exercée par le ressort R_1 sur l'anneau.

9^{ème} exercice :

Un corps solide de forme parallélépipédique et de masse m=200kg est en équilibre sur un plan incliné d'un angle α = 20° Par rapport à l'horizontale. (on donne g=9,8N/kg)

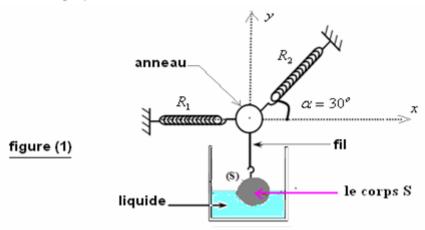


- Déterminer les valeurs des composantes normale R_N et tangentielle R_T de la réaction du plan incliné.
- 2) On exerce sur le corps à l'aide d'un fil inextensible une force pour le faire déplacer vers le haut. Sachant que le coefficient de frottement entre le corps et le plan incliné est : k=0,5.

Quelle est la valeur minimale de la force exercée par le fil pour mettre le corps en mouvement .

10^{ème} exercice :

Le système représenté dans la figure (1) est en équilibre, il est composé d'un corps (S) homogène de masse m=600g et de masse volumique ρ .



Le corps est à moitié immergé dans un liquide de masse volumique ρ_L et il est suspendu (avec à un fil et lié à un anneau de masse m'.

L'anneau est maintenu en équilibre par un fil et deux ressorts:

-un ressort R_1 qui exerce sur le corps S une force horizontale \vec{F}_1 .

-un ressort R_2 qui exerce sur le corps S une force horizontale \vec{F}_2 faisant un angle $\alpha = 30^{\circ}$ avec l'horizontale.

(le fil est inextensible et exerce sur le corps S une force \vec{T}). On donne g=10N/kg

Etude de l'équilibre du corps (S):

- Faites le bilan des forces qui s'exercent sur le corps S.
- 2) Représentez les forces qui s'exercent sur le corps (S).
- 3) 3-1-Calculer l'intensité du poids du corps (S).
 - 3-2- Sachant que la masse volumique du corps $S: \rho = \frac{m}{V}$ (V: volume du corps et m sa masse). et la masse volumique du liquide $\rho_L = \frac{2}{3} \rho$.

Donner l'expression de l'intensité de la poussée d'Archimède en fonction de valeur m et g , puis calculer sa valeur.

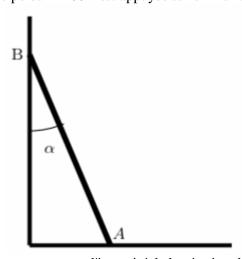
3-3- En appliquant la condition d'équilibre du corps S , montrez que l'intensité de la force \overline{T} est T=4N ·

Etude de l'équilibre de l'anneau:

- 1) Faites le bilan des forces qui s'exercent sur l'anneau.
- Représentez les forces qui s'exercent sur l'anneau.
- 3) 3-1)En utilisant la méthode analytique montrer que l'intensité du poids de l'anneau est P'=2N, sachant que l'intensité de la force \(\vec{F}_2\) est \(F_2 = 12N\).
 - 3-2) En déduire la valeur de la masse m' de l'anneau.
- 4) Déterminer la valeur de l'intensité de la force \vec{F}_1 exercée par le ressort R_1 Sur l'anneau.
- 5) Déterminer la constante de raideur $\mathbf{k_2}$ du ressort $\mathbf{R_2}$ sachant que son allongement est $\Delta \ell_2 = 6cm$

11^{ème} exercice :

1) Une échelle AB de longueur L=2m et de poids P=400N est appuyée sur un mur comme l'indique la figure suivante :



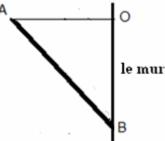
Sachant que le contact en B se fait sans frottement et que l'intensité de la réaction du mur sur AB au point B est égale à 300N,

- 1) Déterminer la nature du contact de l'échelle avec le sol au point A.
- 2) En étudiant l'équilibre de l'échelle déterminer l'intensité de la réaction du sol au point A.

Une barre homogène AB de masse m= 60 kg repose par son extrémité B sur un mur verticale.

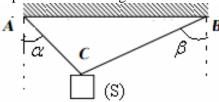
La barre est maintenue en équilibre par son extrémité A grâce à un câble de masse négligeable fixé au mur en O On donne OB= 2OA; g= 10 N/kg.

- 1. Faire le bilan des forces qui s'exercent sur la barre et les représenter.
- 2. Déterminer les caractéristiques de chaque force.



- En déduire la nature du contact de la barre en B avec le mur.
- 4) Calculer le coefficient de frottement.

On considère le corps (S) de masse m=300kg représenté dans la figure suivante:



Les deux fil sont de mases négligeables et forment avec la vertical les angles $\alpha = 45^{\circ}$ $\beta = 30^{\circ}$.

- 1) faites le bilan des forces qui s'exercent sur le corps (S).
- 2) représentez les forces qui s'exercent sur (S).
- 3) Déterminez les intensités des forces qui s'exercent sue le corps (S). on donne g=10N/kg.

SBIRO Abdelkrim pour toute observation contactez moi

sbiabdou@yahoo.fr.

correction

Correction du 1^{er} exercice

 $ec{P}$: poids de la sphère.

 $\overline{m{R}}$: réaction du mur (elle est perpendiculaire au mur en $m{M}$)

2) a) A l'équilibre : P+R+T=0

La ligne polygonale des trois forces est fermée.

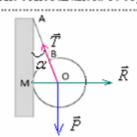
et les lignes d'action des trois forces sont concourantes et coplanaires.

b)

Ona:

$$\sin \alpha = \frac{OM}{OA} = \frac{r}{r + AB} = \frac{10}{10 + 20} = \frac{10}{30} = \frac{1}{3}$$

$$\Rightarrow \qquad \alpha = \sin^{-1}\left(\frac{1}{3}\right) \approx 19.5^{\circ}$$



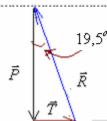
3-2- a) méthode graphique :.

La ligne polygonale des trois forces est fermée.

On a:
$$P = m.g = 1.4 \times 10 = 14N$$

Choisissons comme echelle :
$$1cm \rightarrow 3,5N$$

Donc \vec{P} sera représenté par 4cm.



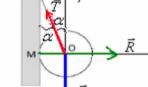
On trouve 1,5cm pour $\overline{T} \Rightarrow T=5N$ On trouve 4,4cm pour $\bar{R} \Rightarrow T=15N$ 2) a) A l'équilibre : (a)

$$\vec{P} + \vec{R} + \vec{T} = \vec{0}$$

Projection de la relation (a) sur oy

$$-P + 0 + T \cdot \cos \alpha = 0 \qquad \Rightarrow \qquad$$

$$T = \frac{P}{\cos \alpha} = \frac{14}{\cos 19.5} \approx 15N$$



Projection de la relation (a) sur ox

$$0 + R - T \cdot \sin \alpha = 0$$
 \Rightarrow $R = T \cdot \sin \alpha = 15 \cdot \sin 19,5° = 5N$

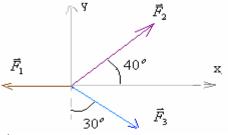
Correction du 2^{eme} exercice :

1) Le corps S est en équilibre sous l'action de trois forces , donc les droites d'action de ces trois forces sont concourantes et coplanaires et la somme vectorielle de ces trois forces est égale vecteur nul.

$$\Sigma \vec{F} = 0$$
 c'est-à-dire:

$$\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = \vec{0}$$

Représentons les trois forces dans le repère (O,x,y).



D'après la condition d'équilibre on a : $\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = \vec{0}$

$$\vec{F}_1+\vec{F}_2+\vec{F}_3=\vec{0}$$

Projetons cette relation sur l'axe oy:

$$0 + F_2 \cdot \sin 40 - F_3 \cdot \cos 30 = 0$$

$$\Rightarrow$$
 $F_2 \sin 40 = F_3 \cos 30 \, \mathbf{d'o\hat{\mathbf{u}}}$:

$$F_3 = \frac{F_2 \cdot \sin 40}{\cos 30}$$

$$0 + F_2 \cdot \sin 40 - F_3 \cdot \cos 30 = 0 \qquad \Rightarrow \quad F_2 \cdot \sin 40 = F_3 \cdot \cos 30 \quad \mathbf{d'où}: \qquad F_3 = \frac{F_2 \cdot \sin 40}{\cos 30} \qquad \mathbf{A.N:} \ F_3 = \frac{4 \times \sin 40}{\cos 30} \approx 3N$$

3) en projetant la relation (1) sur l'axe (ox) $-F_1 + F_2 \cdot \cos 40 + F_3 \sin 30 = 0$ $\Rightarrow F_1 = F_2 \cdot \cos 40 + F_3 \sin 30$ A.N: $F_1 = 4 \cos 40 + 3 \sin 30 \approx 4.5N$

$$-F_1 + F_2 \cdot \cos 40 + F_3 \sin 30 = 0$$

$$\Rightarrow F_1 = F_2 \cdot \cos 40 + F_3 \sin 30$$

A.N:
$$F_1 = 4\cos 40 + 3\sin 30 \approx 4.5N$$

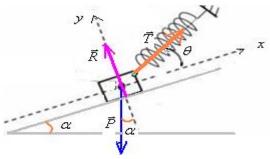
Correction du 3^{eme} exercice :

1) A l'équilibre le corps C est soumis à l'action des forces suivantes:

 $\bar{P}:$ le poids du corps C.

 $ec{T}$: la tension du ressort .

 $ar{R}$: la réaction du plan $\,$ incliné.



2)2-1- Le corps C est en équilibre sous l'action de trois forces , \vec{P} , \vec{T} et \vec{R} donc $\vec{P} + \vec{T} + \vec{R} = \vec{0}$ (a) En projetant la relation (a) sur l'axe ox:

$$\vec{P} + \vec{T} + \vec{R} = \vec{0} \quad \text{(a)}$$

$$= P \sin \alpha \pm T \cos \theta \pm 0 = 0$$

$$-P\sin\alpha + T.\cos\theta + 0 = 0 \implies T.\cos\theta = P.\sin\alpha$$

$$T = K.\Delta \ell$$

donc: $K.\Delta \ell.\cos\theta = m.g.\sin\alpha$

$$\Delta \ell = \frac{m.g.\sin \alpha}{K \cos \theta}$$

$$\Rightarrow \Delta \ell = \frac{m g \sin \alpha}{K \cos \theta} \quad \text{A.N:} \qquad \Delta \ell = \frac{0.2 \times 10 \sin 30}{40 \times \cos 20} = 0.0266 \approx 0.027 m = 2.7 cm$$

2-2- On en déduit la tension du ressort : $T = K.\Delta \ell = 40 \times 0.027 \approx 1M$

En projetant la relation (a) sur l'axe oy:

$$-P.\cos\alpha + T.\sin\theta + R = 0$$

$$\Rightarrow R = m.g.\cos\alpha - T.\sin\theta$$

$$\Rightarrow R = m.g.\cos\alpha - T.\sin\theta$$
 A.N: $R = 0.2 \times 10.\cos 30 - 1.\sin 20 \approx 1.4 N$

Correction du 4^{eme} exercice :

- Les forces qui s'exercent sur le corps S sont :
 - $ar{P}$: Poids du corps S.
 - $ar{R}$: La réaction du plan incliné (elle est perpendiculaire au plan car le contact se fait sans frottement).
 - $\overline{T}:$ la force exercée par le ressort.

$$T = K.\Delta \ell = 15 \times 5.10^{-2} = 0.75 N$$

- 4) a) Le corps S est en équilibre sous l'action de trois forces :
 - $ec{P}$, $ec{R}$ et $ec{T}$ donc on a:
- (1) $\vec{P} + \vec{T} + \vec{R} = \vec{0}$

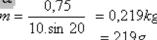
Par projection de cette relation sur l'axe ox elle devient:

- $-P \sin \alpha + T + 0 = 0$ c'est-à-dire
 - $-m.g.\sin \alpha + T = 0$ d'où

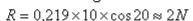
Application numérique

 $m.g.\sin \alpha = T$

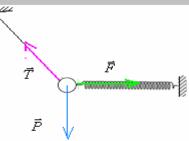
A.N:



- b) Par projection sur l'axe oy de la relation (1):
- $-P.\cos\alpha + 0 + R = 0$ c'est-à-dire $-m.g.\cos\alpha + R = 0$



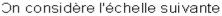
- 1) Le disque est soumis à l'action de 3 forces:
- ₱: le poids du disque.
- ₱: la forces exercée par le ressort .
- T
 ∴ la tension du fil.



 $\Rightarrow R = m.g.\cos\alpha$

2)

- 2) Condition d'équilibre du disque : la somme vectorielle des trois forces est égale vecteur nul.
 - $\vec{P} + \vec{T} + \vec{R} = \vec{0}$
- la ligne polygonale des 3 forces est fermée.
- 3) 3-1- la méthode de la construction géométrique ⇔ la ligne polygonale des 3 forces est fermée.
- On a $P = m.g = 0.3 \times 10 = 3N$



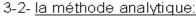
 $1cm \rightarrow 1N$

et on trace le polygone fermé des trois forces.

$$\tan \alpha = \frac{F}{P} = \frac{4}{3}$$

$$\Rightarrow$$

$$\alpha = \tan^{-1}(\frac{4}{3}) \approx 53^{\circ}$$



(1)
$$\vec{P} + \vec{T} + \vec{R} = \vec{0}$$

On considère le repère (o,x,y)

Projection de la relation (1) sur ox:

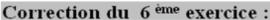
 $0 - T \sin \alpha + F = 0$ \Rightarrow $F = T \cdot \sin \alpha$ (a)

Projection de la relation (1) sur oy:

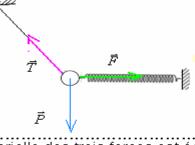
 $-P+T\cos\alpha+0=0 \Rightarrow P=T\cos\alpha$ (b)

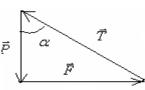
 $\Rightarrow \tan \alpha = \frac{F}{P} = \frac{4}{3}$ $\Rightarrow \alpha = \tan^{-1}(\frac{4}{3}) \approx 53^{\circ}$

D'après la relation (a) $T = \frac{F}{\sin \alpha} = \frac{1}{\sin \alpha}$

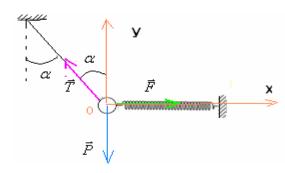


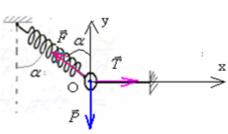
- 1) , le solide S'est soumis à l'action de trois forces :
- \vec{P} : le poids du corps
- \vec{F} : la force exercée par le ressort
- \vec{T} : la tension du fil.
- Soit (O,x,y).
- 3) condition d'équilibre: $\vec{P} + \vec{F} + \vec{T} = \vec{0}$





Graphiquement on trouve R=5N.





composantes des forces

$$\vec{P} | P_x = 0$$

$$\vec{F} \begin{vmatrix} F_x &= -F \cdot \sin \alpha \\ F_y &= +F \cdot \cos \alpha \end{vmatrix}$$

$$\vec{T} \Big|_{T_n = 0}^{T_n = +\infty}$$

5) Projection de la relation : $\vec{P} + \vec{F} + \vec{T} = \vec{0}$ sur oy:

$$-P+F\cos\alpha+0=0$$

$$\Rightarrow$$

$$F = \frac{m \cdot g}{\cos \alpha}$$

A.N:
$$F = \frac{200.10^{-3} \times 10}{.\cos 30} = 2.3N$$

6) Projection de la relation : $\vec{P} + \vec{F} + \vec{T} = \vec{0}$ sur ox:

$$0 - F \sin \alpha + T = 0$$
 (avec : $T = K.\Delta \ell$) \Rightarrow

(avec :
$$T = K \Lambda$$
)

$$\Rightarrow$$

$$K.\Delta \ell = F \sin \alpha$$
 d'où : $\Delta \ell = \frac{F \sin \alpha}{K}$

$$\Delta \ell = \frac{2.3 \times \sin 30}{40} \approx 0.029 m = 2.9 cm$$

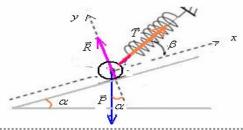
Correction du 7 ème exercice :

A l'équilibre le corps est soumis à l'action des forces suivantes:

 \bar{P} : Le poids du corps C.

 \vec{T} : La tension du ressort.

 $ar{R}$: La réaction du plan $\,$ incliné. (Elle est perpendiculaire au plan car le contact se fait sans frottement).



2)2-1- Le corps est en équilibre sous l'action de trois forces , $ec{P}_-$, $ec{T}$ et $ec{R}$ donc En projetant la relation (a) sur l'axe ox:

$$\vec{P} + \vec{T} + \vec{R} = \vec{0}$$

$$-P\sin\alpha + T\cos\beta + 0 = 0 \implies T\cos\beta = P\sin\alpha$$

$$\Rightarrow T.\cos \beta = P.\sin \alpha$$
 done

$$T.\cos \beta = m.g.\sin \alpha$$

d'où:

$$T = \frac{m.g.\sin \alpha}{\cos \beta}$$

A.N :

$$T = \frac{m.g.\sin \alpha}{\cos \beta}$$

$$T = \frac{1,7 \times 9,8 \sin 40}{\cos \beta} = \frac{10,7}{\cos \beta}$$

$$\cos \beta \qquad \cos \beta$$
On a $T = \frac{10.7}{10.7} = 10.7 M$

3) **pour**
$$\beta = 0$$
 On a $T = \frac{10.7}{\cos 0} = 10.7 N$

pour
$$\beta = 25^{\circ}$$
 On a $T = \frac{10.7}{\cos 25} = 11.8 N$

■ pour
$$\beta = 45^{\circ}$$
 On a $T = \frac{10.7}{\cos 45} \approx 15N$

4) on a :
$$T = K.\Delta \ell$$

$$\Rightarrow$$

$$\Delta \ell = \frac{T}{K}$$

pour
$$\beta = 0$$
 On a $T = 10.7N$ Donc

■ pour
$$\beta = 0$$
 On a $T = 10.7 N$ Donc: $\Delta \ell = \frac{T}{K} = \frac{10.7}{60} \approx 0.18 m = 18 cm$

■ pour
$$\beta = 25$$
 On a $T = 11.8N$ Donc: $\Delta \ell = \frac{T}{K} = \frac{11.8}{60} \approx 0.2m = 20cm$

$$\Delta \ell = \frac{T}{K} = \frac{11,8}{60} \approx 0,2m = 20cm$$

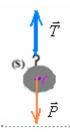
■ pour
$$\beta = 25$$
 On a $T = 15N$ Donc: $\Delta \ell = \frac{T}{V} = \frac{15}{60} \approx 0,25m = 25cm$

$$\Delta \ell = \frac{T}{K} = \frac{15}{60} \approx 0.25 m = 25 cm$$

correction du 8 ème exercice :

Etude de l'équilibre du corps (S):

- 1) Le corps S est soumis à l'action de deux forces : \vec{P} :poids du corps S \vec{T} : Tension du fil.
- représentation des forces
- 3) 3-1 $P = m.g = 0.6 \times 10 = 6N$
 - 3.2) Condition d'équilibre : $\vec{P} + \vec{T} = \vec{0}$ donc les 2 forces ont même intensité : T=P=m.g=6N



Etude de l'équilibre de l'anneau:

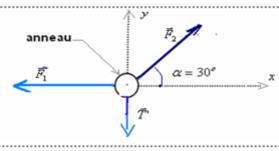
1)L'anneau est en équilibre sous l'action de trois forces:

 \vec{T}' : tension du fil. (le fil étant inextensible donc T'=T=4N).

 $ec{F}_{\!\scriptscriptstyle 1}$: force exercée par le ressort $\mathbf{R}_{\!\scriptscriptstyle 1}$.

 $ar{F}_2$: force exercée par le ressort ${f R_2}$

2)



3) 3-1- Condition d'équilibre:

(2)
$$\vec{T}' + \vec{F}_1 + \vec{F}_2 = \vec{0}$$

Par projection de la relation (2) sur l'axe oy:

$$-T'+F_2.\sin \alpha+0=0$$

$$\Rightarrow F_2 \cdot = \frac{T}{\sin \alpha} = \frac{4}{\sin 30} = 8N$$

Par projection sur l'axe ox:

$$0 + F_2 \cdot \cos \alpha - F_1 = 0$$

$$\Rightarrow F_1 = F_2 \cdot \cos \alpha = 8 \cdot \cos 30 \approx 6.9N$$

correction du 9 ème exercice :

1) le corps est en équilibre

 $ec{P}$: le poids du corps . sous l'action de 2 forces : $ec{R}$: réaction du plan incliné.

À l'équilibre on a: $\vec{P} + \vec{R} = \vec{0}$ donc les 2 forces sont opposées

donc: $R = P = m.g = 200 \times 9.8 = 1960N$

glissement et de même intensité

sens de

sens du

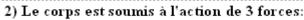
mouvement

R_T

 $R_r = R \sin \alpha = 1960 \times \sin 20 \approx 670 N$

et $R_M = R \cdot \cos \alpha = 1960 \times \cos 20 \approx 1842 N$

Le sens de glissement du corps étant vers le bas (la réactions est inclinée dans le sens inverse)



 $ec{P}$: le poids du corps .

 $ec{R}\,:$ réaction du plan incliné.

 \vec{T} : la tension du fil.

à l'équilibre on a : $\vec{P} + \vec{R} + \vec{T} = \vec{0}$ Par projection sur l'axe oy:

$$-P.\cos\alpha + R_M + 0 = 0$$

$$\Rightarrow R_N = m.g.\cos\alpha$$

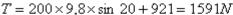
A.N: $R_N = 200 \times 9.8 \times .\cos 20 \approx 1842 N$

Par projection sur l'axe ox:

$$-P.\sin \alpha - f + T = 0$$

$$\Rightarrow$$

$$T = m.g. \sin \alpha + f$$



correction du 10 ^{éme} exercice :

Etude de l'équilibre du corps (S):

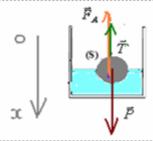
Le corps S est soumis à l'action des forces suivantes :

 $ar{P}$:poids du corps S.

 \bar{T} : Tension du fil.

 $ar{F}_{{\scriptscriptstylem{A}}}$: poussée d'Archimède.

représentation des forces.



3-2-
$$F_A = \rho_L V_{imm} \cdot g = \frac{2}{3} \rho \cdot \frac{V}{2} \cdot g = \frac{\rho \cdot V \cdot g}{3} = \frac{m \cdot g}{3}$$

donc:
$$F_A = \frac{0.6 \times 10}{3} = 2N$$

3-3-Le corps S est équilibre sous l'action de 3 forces , donc : $\Sigma \widetilde{F} = \overline{0}$

$$(1) \qquad \vec{P} + \vec{T} + \vec{F}_A = \vec{0}$$

En projetant la relation (1) sur l'axe ox:

$$P - T - F_A = 0$$
 \Rightarrow

$$P-T-F_A = 0$$
 \Rightarrow $T=P-F_A = 6-2 = 4N$

Etude de l'équilibre de l'anneau:

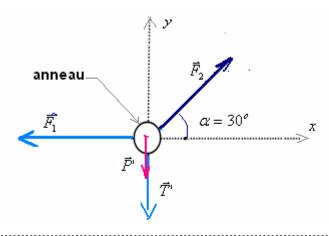
1)L'anneau est en équilibre sous l'action de quatre forces:

 \vec{T} : tension du fil. (le fil étant inextensible donc T'=T=4N).

 $ec{F}_1$: force exercée par le ressort \mathbf{R}_1 .

 $ar{F}_2$: force exercée par le ressort ${f R_2}$ (d'intensité $|F_2|$ = 12N) .

 $ec{P}$ ' : poids de l'anneau.



(2)
$$\vec{T}' + \vec{F_1} + \vec{F_2} + \vec{P}' = \vec{0}$$

Par projection de la relation (2) sur l'axe oy:

$$-T' + F_2 \cdot \sin \alpha + 0 - P' = 0$$

$$\Rightarrow P' = F_2 \cdot \sin \alpha - T' = 12 \sin 30 - 4 = 2N$$

$$m' = \frac{P'}{g} = \frac{2}{10} = 0.2kg = 200g$$

4) Par projection sur l'axe ox:

$$0 + F_2 \cdot \cos \alpha - F_1 = 0$$

$$\Rightarrow F_1 = F_2 \cdot \cos \alpha = 12 \cdot \cos 30 = 10,4N$$

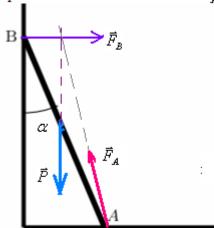
$$F_2 = k_2 . \Delta \ell_2$$

$$0 + F_2 \cdot \cos \alpha - F_1 = 0 \qquad \Rightarrow F_1 = F_2 \cdot \cos \alpha = 12 \cdot \cos 30 = 10,4N$$

$$5) \qquad F_2 = k_2 \cdot \Delta \ell_2 \qquad \Rightarrow \qquad k_2 = \frac{F_2}{\Delta \ell_2} = \frac{12}{6 \cdot 10^{-2}} = 200N/m$$

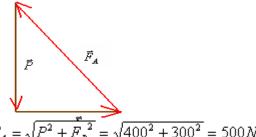
Correction du11 eme exercice:

1) L'échelle AB est en équilibre sous l'action de 3 forces : son poids \vec{P} , la réaction du mur en B : \vec{F}_B et celle du sol en A : \vec{F}_A Donc les trois forces sont concourantes: ce qui permet de savoir la direction de . \vec{F}_A



La réaction du sol au point A n'est pas perpendiculaire au sol, donc le contact au point A se fait avec frottement.

2) L'échelle AB est en équilibre sous l'action de 3 forces donc le polygone de ces trois forces est fermé.



En appliquant le théorème de Pythagore on a: $F_A = \sqrt{P^2 + F_B^2} = \sqrt{400^2 + 300^2} = 500 N$

Correction du12 ème exercice :

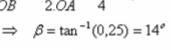
- les forces qui s'exercent sur la barre sont;
- \vec{P} :poids de la barre.
- \vec{T} : tension du fil.
- \bar{R} réaction du mur au point B.

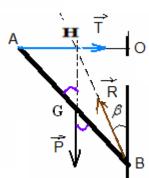
Les droites d'actions des trois forces sont concourantes.

On a : OB= 2OA
on a aussi
$$OH = \frac{OA}{2}$$

(triangles aux sommets)

$$\tan \beta = \frac{OH}{OB} = \frac{OA/2}{2.OA} = \frac{1}{4} = 0.25$$





Le polygone de trois forces est fermé

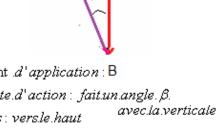
On a :
$$\tan \beta = \frac{T}{P}$$
 \Rightarrow $T = P \cdot \tan \beta = m \cdot g \cdot \tan \beta = 60 \times 10 \times \tan 14 \approx 150 N$

et on a
$$\cos \beta = \frac{R}{P} \implies R = \frac{P}{\cos \beta} = \frac{m \cdot g}{\cos \beta} = \frac{60 \times 10}{\cos 14} \approx 618N$$

Caractéristiques des forces

$$\vec{P} \begin{cases} -\textit{point .d'application : G} \\ -\textit{droite.d'action : la.verticale} \\ -\textit{sens : vers.le.bas.} \end{cases} -\textit{point .d'application : A} \\ -\textit{sens : A} \rightarrow O \\ -\textit{intensité : P} = 600N \end{cases} \vec{T} \begin{cases} -\textit{point .d'application : A} \\ -\textit{droite.d'action : AO} \\ -\textit{sens : A} \rightarrow O \\ -\textit{intensité : T} = 150N \end{cases} \vec{R} \begin{cases} -\textit{point .d'application : B} \\ -\textit{droite.d'action : fait.un.angle. } \beta. \\ -\textit{avec.la.verticale} \\ -\textit{intensité : R} = 618N \end{cases}$$

$$\vec{T} \begin{cases} -\text{ point .d'application : } AO \\ -\text{ droite.d'action : } AO \\ -\text{ sens : } A \rightarrow O \\ -\text{ intensité : } T = 150N \end{cases}$$



- 3) le contact de la barre au point B se fait avec frottement.
- soit φ L'angle de frottement.

Condition d'équilibre: $\vec{P} + \vec{R} + \vec{T} = \vec{0}$

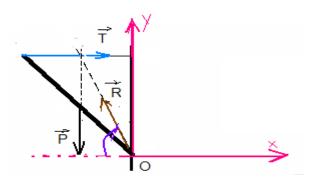
Par projection sur l'axe ox:
$$0 - R_N + T = 0$$
 \Rightarrow $R_N = T = 150N$
Par projection sur l'axe oy: $-P + R_T + 0 = 0$ \Rightarrow $R_T = P = 600N$

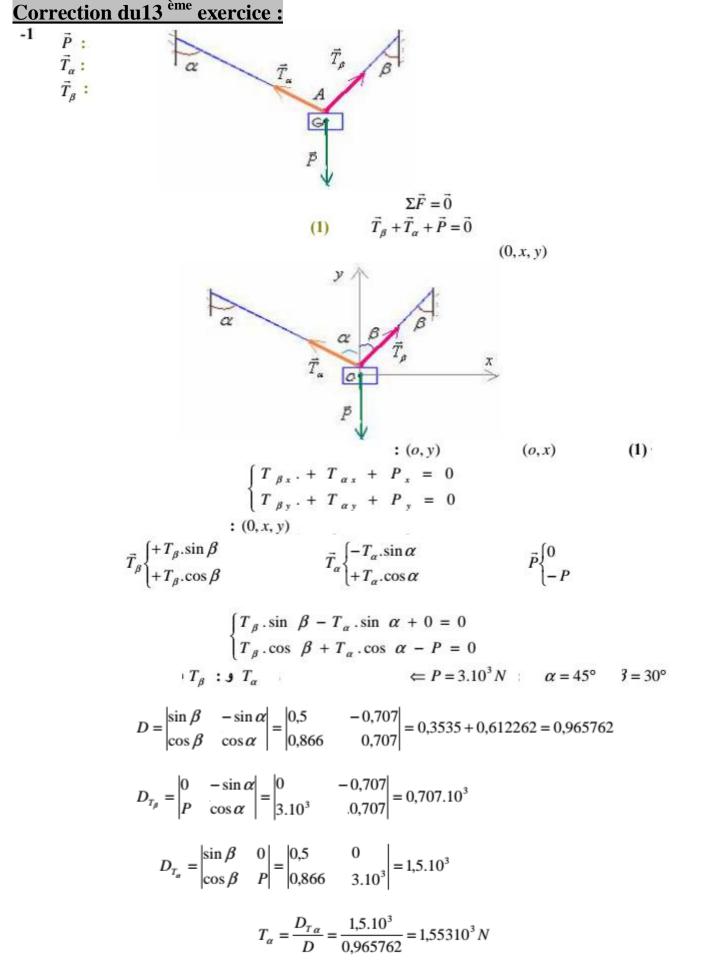
$$\Rightarrow$$
 $R_{sr} = T = 1502$

Par projection sur l'axe oy:
$$-P+R_r+0=0$$

$$R_r = P = 600N$$

le coefficient de frottement :
$$K = \tan \varphi = \frac{R_T}{R_N} = \frac{600}{150} = 4$$





SBIRO Abdelkrim pour toute observation contactez moi

sbiabdou@yahoo.fr

mail:

 $T_{\beta} = \frac{D_{T\beta}}{D} = \frac{0.707.10^3}{0.065762} = 2.196.10^3 N$